『壹』 红白帽子的逻辑问题
犯人如果够聪明第二天都可以被释放
第一步:
白帽子犯人 A B
A,B放风时都看到8顶红帽子,1顶白帽子
由于国王说:“至少有一个人头上的帽子是白色”就说明不止一个人头上带着白帽子。。
于是,这两个人都明白“只看到一个人戴着白帽子,说明自己戴着白帽子”
白帽子犯人(A、B)全部被释放
第二步:
白帽犯人都被释放了,OH,YEAH!
红帽犯人一看两个戴着白帽子的毫不犹豫回答,并且被释放了。。。
自己戴的必须是红帽子啊(请见白帽子犯人的逻辑)
于是大家都被释放了。。
『贰』 找一些有趣的智力题…需要有问题和答案…!不要发网址来!谢谢
乒乓球问题
简介:该题由中华谣网站改造,有一定难度。
详细介绍:
假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
答:第一个拿几个无所谓,重要的是要保持5个的标准例:假如你一开始拿1个,那么第二个人就要拿4个,然后你再拿3个,拿第二个人拿俩,这样下去第二个人永远保持5个,当然你如果拿5个,那么第二个人也要拿5个.这样第一个人输定了但如果第一个人拿了1个,而第二个人拿了3个,那么第一个人机会来了,第一个人拿1个,这样5的倍数掌握在第一个人手里了,那么第二个人输定了
是笔画
按前面的数字和“人”的笔划算:一个人就是“一”一笔加上“人”两笔,一共有三笔;二个人就是“二”两笔加上“人”两笔,一共有四笔;三个人就是“三”三笔加上“人”两笔,一共五笔;四个人就是“四”五笔加上“人”两笔,一共七笔
1。海盗分金问题
传说,从前有五个海盗抢得了100枚金币.他们通过了一个如何确定选用谁的分配方案的安排.即:
1.抽签决定各人的号码(1,2,3,4,5);
2.先由1号提出分配方案,然后5个人表决.当且仅当超过半数人同意时,方案才算被通过,否则他将被扔入大海喂鲨鱼;
3.当1号死后,再由2号提方案,4个人表决,当且仅当超过半数同意时,方案才算通过,否则2号同样将被扔入大海喂鲨鱼;
4.往下依次类推……
根据上面的这个故事,现在提出如下的一个问题.即:
我们假定每个海盗都是很聪明的人,并且都能够很理智地判断自己的得失,从而做出最佳的选择,那么第一个海盗应当提出怎样的分配方案才能够使自己不被扔入大海喂鲨鱼,而且收益还能达到最大化呢?
2。帽子问题(疯狗问题与此同理)
一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却不知自己的。主持人先让大家看看别人头上戴的什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
3。称球问题:
一共12个一样的小球, 其中只有一个重量与其它不一样(未知轻重),给你一个天平, 只称三次, 找出那个不同重量的球?
如果一共13个一样的小球, 其中只有一个重量与其它不一样(未知轻重),给你一个天平, 只称三次, 找出那个不同重量的球?
4。分金条问题:
你让某些人为你工作了七天, 你要用一根金条作为报酬。这根金条要被分成七块。你必须在每天的活干完后交给他们一块。如果你只能将这根金条切割两次,你怎样给这些工人分?
5。猴子搬香蕉问题:
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。
6。飞机加油问题:
每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈。
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
7。硬币游戏:
16个硬币,A和B轮流拿走一些,每次拿走的个数只能是1,2,4中的一个数。
谁最后拿硬币谁输。
问:A或B有无策略保证自己赢?
8。倒水问题:
也可以说是倒酒:)有三个酒杯,其中两个大酒杯每个可以装8两酒,一个可以装3两酒。现在两个大酒杯都装满了酒,只用这三个杯子怎么把酒平均的分给4个人喝?
9。帽子问题2:
有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到对方说话的声音。”
有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况下,国王宣布两条如下:
1.谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
2.谁知道自己戴的是黑帽子,就释放谁。
其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想,他是怎样推断的?
10。年龄问题:
一普查员问一女人,“你有多少个孩子,他们多少岁?”女人回答:“我有三个孩子,他们的岁数相乘是36,岁数相加就等於隔离间屋的门牌号码.”普查员立刻走到隔邻,看了一看,回来说:”我还需要多少资料.”女人回答:“我现在很忙,我最大的孩子正在楼上睡觉.”普查员说:”谢谢,我己知道了
问题:那三个孩子的岁数是多少。
答案:
1。从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!
参考文章:
凶猛海盗的逻辑
(本帖改编自《科学美国人》杂志中IanStewart的《凶猛海盗的逻辑》)
海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性
命,干的是刀头上舔血的营生。在我们的印象中,他们一般都瞎一只
眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地
下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过
大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不
驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长
的唯一特权,是有自己的一套餐具--可是在他不用时,其他海盗是
可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。
现在船上有若干个海盗,要分抢来的若干枚金币。自然,这样的问题
他们是由投票来解决的。投票的规则如下:先由最凶猛的海盗来提出
分配方案,然后大家一人一票表决,如果有50%或以上的海盗同意这个
方案,那么就以此方案分配,如果少于50%的海盗同意,那么这个提出
方案的海盗就将被丢到海里去喂鱼,然后由剩下的海盗中最凶猛的那
个海盗提出方案,依此类推。
我们先要对海盗们作一些假设。
1)每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也
就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。
另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私
底下的交易是不存在的,因为海盗除了自己谁都不相信。
2)一枚金币是不能被分割的,不可以你半枚我半枚。
3)每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。
4)每个海盗当然希望自己能得到尽可能多的金币。
5)每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而
下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,
他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二
鸟在林,不如一鸟在手。
6)最后,每个海盗都很喜欢其他海盗被丢到海里去喂鱼。在不损害自
己利益的前提下,他会尽可能投票让自己的同伴喂鱼。
现在,如果有10个海盗要分100枚金币,将会怎样?
要解决这类问题,我们总是从最后的情形向后推,这样我们就知道在
最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可
以得到最后第二步应该作怎样的决定,等等等等。要是直接就从开始
入手解决问题,我们就很容易被这样的问题挡住去路:"要是我作这
样的决定,下面一个海盗会怎么做?"
以这个思路,先考虑只有2个海盗的情况(所有其他的海盗都已经被丢
到海里去喂鱼了)。记他们为P1和P2,其中P2比较凶猛。P2的最佳方
案当然是:他自己得100枚金币,P1得0枚。投票时他自己的一票就足
够50%了。
往前推一步。现在加一个更凶猛的海盗P3。P1知道--P3知道他知道
--如果P3的方案被否决了,游戏就会只由P1和P2来继续,而P1就一
枚金币也得不到。所以P3知道,只要给P1一点点甜头,P1就会同意他
的方案(当然,如果不给P1一点甜头,反正什么也得不到,P1宁可投
票让P3去喂鱼)。所以P3的最佳方案是:P1得1枚,P2什么也得不到,
P3得99枚。
P4的情况差不多。他只要得两票就可以了,给P2一枚金币就可以让他
投票赞同这个方案,因为在接下来P3的方案中P2什么也得不到。P5也
是相同的推理方法只不过他要说服他的两个同伴,于是他给每一个在
P4方案中什么也得不到的P1和P3一枚金币,自己留下98枚。
依此类推,P10的最佳方案是:他自己得96枚,给每一个在P9方案中什
么也得不到的P2,P4,P6和P8一枚金币。
下面是以上推理的一个表(Y表示同意,N表示反对):
P1 P2
0 100
N Y
P1 P2 P3
1 0 99
Y N Y
P1 P2 P3 P4
0 1 0 99
N Y N Y
P1 P2 P3 P4 P5
1 0 1 0 98
Y N Y N Y
……
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0 1 0 1 0 1 0 1 0 96
N Y N Y N Y N Y N Y
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
现在我们将海盗分金问题推广:
1)改变一下规则,投票中方案必须得到超过50%的票数(只得到50%票
数的方案的提出者也会被丢到海里去喂鱼),那么如何解决10个海盗
分100枚金币的问题?
2)不改变规则,如果让500个海盗分100枚金币,会发生什么?
3)如果每个海盗都有1枚金币的储蓄,他可以把这枚金币用在分配方案
中,如果他被丢到海里去喂鱼,那么他的储蓄将被并在要分配的金币
堆中,这时候又怎样?
通过对规则的细小改变,海盗分金问题可以有许多变化,但是最有趣
的大概是1)和2)(规则仍为50%票数即可)的情况,本帖只对这两种情
况进行讨论。
首先考虑1)。现在只有P1和P2的情形变得对P2其糟无比:1票是不够的,
『叁』 有趣味数学题吗或者有IQ题吗最好答案是好Q的
1,奇怪的村庄
某地有两个奇怪的村庄,张庄的人在星期一、三、五说谎,李村的人在星期二、四、六说谎。在其他日子他们说实话。一天,外地的王从明来到这里,见到两个人,分别向他们提出关于日期的题。两个人都说:"前天是我说谎的日子。" 如果被问的两个人分别来自张庄和李村,那么这一天是星期几?,
2,个个撒谎
一 个精神病医生在寓所被杀,他的四个病人受到警 方传讯。 1,警方根据目击者的证词得知,在医生死亡那天, 这四个病人都单独去过一次医生的寓所。
2,在传讯前,这四个病人共同商定,每人向警方作 的供词条条都是谎言。 每个病人所作的两条供词分别是:
埃弗里:(1)我们四个人谁也没有杀害精神病医生。 (2)我离开精神病医生寓所的时候,他还活着。
布莱克:(3)我是第二个去精神病医生寓所的。 (4)我到达他寓所的时候,他已经死了。
克 朗:(5)我是第三个去精神病医生寓所的。 (6)我离开他寓所的时候,他还活着。
戴维斯:(7)凶手不是在我去精神病医生寓所之后 去的。 (8)我到达精神病医生寓所的时候,他已经 死了。 这四个病人中谁杀害了精神病医生?,
3 ,1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
4,帽子问题:
有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到对方说话的声音。”
有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况下,国王宣布两条如下:
1.谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
2.谁知道自己戴的是黑帽子,就释放谁。
其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想,他是怎样推断的? ,
5,硬币游戏
16 个硬币,A 和B 轮流拿走一些,每次拿走的个数只能是1 ,2 ,4 中的一个数。
谁最后拿硬币谁输。 问:A 或B 有无策略保证自己赢?
,6,说一个屋里有多个桌子,有多个人?
如果3个人一桌,多2个人。
如果5个人一桌,多4个人。
如果7个人一桌,多6个人。
如果9个人一桌,多8个人。
如果11个人一桌,正好。
请问这屋里多少人 。。。
7,如果你有两个桶,一个装的是红色的颜料,另一个装的是蓝色的颜料。你从蓝色颜料桶里舀一杯,倒入红色颜料桶,再从红色颜料桶里舀一杯倒入蓝颜料桶。两个桶中红蓝颜料的比例哪个更高?
加油吧!↖(^ω^)↗
8,怎么样种植4棵树木,使其中任意两棵树的距离相等?,
9,一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走 1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里,
10,假设时钟到了12点。注意时针和分针重叠在一起。在一天之中,时针和分针共重叠多少次?你知道它们重叠时的具体时间吗?
</SPAN></SPAN></SPAN></SPAN></SPAN></SPAN></SPAN></SPAN>
『肆』 猜帽子颜色的智力问题
放下手的女人是这样推理的:
她想:“如果我的帽子是白色的,另外的两个女人会怎么想呢?她们会想:‘已经有一个女人的帽子是白的了,如果我的帽子也是白的,那么就不可能3个人都举起手了,所以我的帽子是红的',所以就有人能立即判断出来并放下手,但是没有人放下,说明我的帽子不是白的,而是红的!” 于是就推理出来了!
这是道逻辑推理学的典型例题,是利用换位思考的方法推理出来的!楼上两个说的什么啊,这是逻辑推理题,不是闹经急转弯……而且还抄袭……
『伍』 逻辑推理智力题
当然是白色了,如果我戴的是黑色,那么另外两个公子会看到一黑一白,他们会想,如果自己戴的是黑的,一定会有人看到两顶黑帽子,那就会说出自己帽子颜色,但没人说,说明没人看到黑帽子,所以我戴的一定是白帽子
『陆』 哪里有经典的智力题啊
我有
1.S先生、P先生、Q先生他们知道桌子的抽屉里有16张扑克牌:红桃A、Q、4 黑桃J、8、4、2、7、3 草花K、Q、5、4、6 方块A、5。约翰教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉 P先生,把这张牌的花色告诉Q先生。这时,约翰教授问P先生和Q 先生:你们能从已知的点数或花色中推知这张牌是什么牌吗? 于是,S先生听到如下的对话:P先生:我不知道这张牌。
Q先生:我知道你不知道这张牌。
P先生:现在我知道这张牌了。
Q先生:我也知道了。
听罢以上的对话,S先生想了一想之后,就正确地推出这张牌是什么牌。
请问:这张牌是什么牌?
2.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
3.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
4.有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?
5.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
6.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
7.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
8.对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。
9.想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
10.一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
11.两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
12.1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
13.有3顶红帽子,4顶黑帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么?
14.10个箱子,每个箱子10个苹果,其中一个箱子的苹果是9两/个,其他的都是1斤/个。 要求利用一个秤,只秤一次,找出那个装9两/个的箱子。
15.5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。问他们中谁的存活几率最大?提示:
1,他们都是很聪明的人
2,他们的原则是先求保命,再去多杀人
3,100颗不必都分完
4,若有重复的情况,则也算最大或最小,一并处死
16.假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
17.卢姆教授说:“有一次我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事之徒引进了一只新的山羊,比它还要重出3磅。 开始时,它们相安无事,彼此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛烈碰撞,两只山羊都一命呜呼了。
现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治·阿伯克龙比说道:“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来的30磅重物的一次撞击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来吗?
18.据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子,分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗
19.已知:每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈, 问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
20.为什么下水道的盖子是圆的?
21.在9个点上画10条直线,要求每条直线上至少有三个点?
22.12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
23.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
24.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?
25.你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
26.据说20分钟内能回答出这道题的人,平均年薪在8万美金以上。这是一道很有趣的推理题。
详细介绍:
在美国,据说20分钟内能回答出这道题的人,平均年薪在8万美金以上。这是一道很有趣的推理题。据统计,在美国20分钟内能回答出这道题的人,平均年薪在8万美金以上。 5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。他们决定这么分: 1。抽签决定自己的号码(1,2,3,4,5) 2。首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 3。如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。 4。以次类推...... 条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。 问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化。
27.在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?
28.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?
29.在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥。
30.8个金币当中有2 个假币,6个真金币每个重 500 克
其中一个假币轻了 100 克 , 即 400 克
另外一个假币重了 100 克 , 即 600 克
1 个没有刻度的天秤,只秤四次 找出 2 个假币 , 而且要分出那个重了, 那个轻了 .
31.奇怪的村庄
某地有两个奇怪的村庄,张庄的人在星期一、三、五说谎,李村的人在星期二、四、六说谎。在其他日子他们说实话。一天,外地的王从明来到这里,见到两个人,分别向他们提出关于日期的题。两个人都说:"前天是我说谎的日子。"如果被问的两个人分别来自张庄和李村,那么这一天是星期几?
32.小猴子搬香蕉问题
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。提示:他可以把香蕉放下往返的走,但是必须保证它每走一米都能有香蕉吃。也可以走到n米时,放下一些香蕉,拿着n根香蕉走回去重新搬50根。
33.倒水问题
有三个立方体无盖盒子,不计容器厚度,容积分别为1*1*1,2*2*2,3*3*3.
要求:1.用此三个盒子装13的水
2.每个杯子只能加水一次
3.不能有水浪费掉.
请问有何方法.
34.分酒问题
(一)
有1个8升的装满酒的杯子和两个小杯子,A和B两个人要平分这8升酒,让两个人都觉得公平的方法是,由A先把酒平分到两个小杯子里,直到他认为自己无论选哪杯都不吃亏为止。然后让B在两个小杯中选自己认为最合算的一杯。剩下的一杯给A。现在有两个8升的装满酒的杯子和4个小杯子,ABCD四个人要怎么分,才可以让每一个人觉得公平?
(二)
有三个酒杯,其中两个大酒杯每个可以装8两酒,一个可以装3两酒。现在两个大酒杯都装满了酒,只用这三个杯子怎么把酒平均的分给4个人喝?
35.经典的帽子问题(不好入手,需要有思维跳跃的过程)
有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到对方说话的声音。”
有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况下,国王宣布两条如下:
(1)谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
(2)谁知道自己戴的是黑帽子,就释放谁。
其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想,他是怎样推断的?
36.一美元纸币
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。请接着看正文吧,挑战你逻辑推理的极限。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。当这三位男士同时站起来付帐的时候,出现了以下的情况:
(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的帐单款额最大,一位叫莫的男士要付的帐单款额其次,一个叫内德的男士要付的帐单款额最小。
(4)每个男士无论怎样用手中所持的硬币付帐,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的帐单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。
随着事情的进一步发展,又出现如下的情况:
(7)在付清了帐单而且有两位男士离开以后,留下的男士又买了一些糖果。这位男士本来可
以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。
(8)于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸
币付了糖果钱?
37.飞机加油的问题
已知:
每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈。
问题:
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
38.取硬币题(回想第4题,有什么不同?)
16个硬币,A和B轮流拿走一些,每次拿走的个数只能是1,2,4中的一个数。
谁最后拿硬币谁输。
问:A或B有无策略保证自己赢?
假设他们都很聪明
39.第十三号大街
史密斯住在第十三号大街,这条大街上的房子的编号是从13号到1300号。琼斯想知道史密斯所住的房子的号码。
琼斯问道:它小于500吗? 史密斯作了答复,但他讲了谎话。
琼斯问道:它是个平方数吗? 史密斯作了答复,但没有说真话。
琼斯问道:它是个立方数吗? 史密斯回答了并讲了真话。
琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。
史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。
但是,琼斯说错了。
史密斯住的房子是几号?
40.晴天、雨天
有一段时间,要是早上下过雨,晚上就是晴天;要是晚上下过雨,那早上一定是晴天.一共下了9天雨,出了6次晴朗的晚上和7次晴朗的早晨.请问这段时间是几天?
41.三人猜数
三个人头上都写有一个自然数,每个人都能看见另两个数,都知这三个数中某两个加起来等于第三个
现在分别问:
第一人知不知自己头上的数,答:不能
第二人知不知自己头上的数,答:不能
第三人知不知自己头上的数,答:不能
第一人知不知自己头上的数,答:不能
第二人知不知自己头上的数,答:不能
第三人知不知自己头上的数,答:能,是144
问题:另两个数分别应该是多少?(三个人都非常聪明)
42.三个精灵(命题者是国外一位教授,他曾断言此题在很长一段时间内将无人能解,的确是经典中的经典)
有甲、乙、丙三个精灵,其中一个只说真话,另外一个只说假话。还有一个随机地决定何时说真话,何时说假话。你可以向这三个精灵发问三条是非题,每条问题只能问其中一个精灵(可以三个问题都问同一个精灵)。你的任务是从他们的答案找出谁说真话,谁说假话,谁是随机答话。这个难题困难的地方是这些精灵会以“Da”或“Ja”回答,但你并不知道它们的意思,只知道其中一个字代表“对”,另外一个字代表“错”。你应该问那三条问题呢?
43.有100个人与鬼,从外表很难区分开来。只知道其中人的个数超过半数,剩下的都是鬼,而人只说真话,鬼可能说真话也可能说假话。这100个人(鬼)互相都知道彼此是人还是鬼。
现在要你从这100个人(鬼)当中找出一个人来,只能通过以下方式:
每次挑出两位,让这两位互相说出对方的身份,你根据两位的话进行判断。
问要最快的找出一个人来,至少要多少次?(一定要考虑最坏的情况)
100个人与鬼,说的是人的数 鬼的数一共等于100。此题非脑筋急转弯题
44.甲和乙手上都拿着一张纸,纸上都写一个数字, 只知道这2个数字是连续的自然数. 甲和乙都可以看对方的数字.但不能够看自己的数字.甲问乙 :你知道我的手上的数字是什么吗? 乙说:不知道 .乙就问回甲啦, 那你又知道自己手上的数字是什么吗? 甲也说不知道,甲又问了乙一次: 你知道你手上的数字是什么吗?乙同样说不知道.乙又再次问甲了,你现在知道自己手上写的数字是什么了吗?甲说,我知道了.问甲和乙手上的数字是多少?
45.三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
46.有一人有240公斤水,他想运往干旱地区赚钱。他每次最多携带60公斤,并且每前进一公里须耗水1公斤(均匀耗水)。假设水的价格在出发地为0,以后,与运输路程成正比,(即在10公里处为10元/公斤,在20公里处为20元/公斤......),又假设他必须安全返回,请问,他最多可赚多少钱?
47.一个机场有若干飞机,每架飞机加满油可以绕行地球赤道1/3周,飞机之间可以空中转送油,问至少安排多少架飞机起飞,可以保证一架飞机不着地环绕地球一周回到飞机场,条件是所有飞机不能坠毁,且只能在飞机场着地
48.飞机上有100个座位,按顺序从1到100编号。有100个乘客,他们分别拿到了从1号到100
号的座位,他们按号码顺序登机并应当对号入座,如果他们发现对应号座位被别人坐
了,他会在剩下空的座位随便挑一个坐。现在假如1号乘客疯了 -_-! (其他人没疯),他会
在100个座位中随机座一个座位。那么第100人正确坐自己坐位的概率是多少?
49.有一次,一艘船在海上遇到风暴。为了减轻船的重量,摆在25名乘客面前的选择是把一部分人抛到海里。这样,船和剩下的人也许还能得救。谁也不愿意自动跳入海中。乘客里有11个教徒,其中一个想出了一个主意。他让所有的25人坐成一圈,然后依次报数“1、2、3”,规定报到“3”的人就被抛到海里。最后报数的结果有14人被抛下海。剩下的是这11个教徒。那么,他是如何安排这些剩余者的位置的
50.有一个细菌,1分钟分裂为2个,再过1分钟,又分别分裂为2 个,总共分裂为4个。这样,一个细菌分裂成满满一瓶需要1个小时。同样的细菌,如果从2个开始分裂,分裂成一瓶需要几分钟
51.一机修工人到仓库提汽油,保管员指着货架上一排并列的六只油桶说:“这六桶里分别装了汽油、柴油、机油,你不要看桶里,也不准闻,只看桶上标明的数量。数量分别是:15升、16升、18升、19升、20升、31升。还告诉你机油只有柴油的一半了,你要提的汽油只剩一桶了”。假如是你,应该提哪一桶?为何要提那一桶?
52.有一天,某一珠宝店被盗走了一块贵重的钻石。经侦破,查明作案人肯定在甲、乙、丙、丁之中。于是,对这四个重大嫌疑犯进行审讯。审讯所得到的口供如下:
甲:我不是作案的。
乙:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
丁:作案的不是我。
经查实:这四个人的口供中只有一个是假的。那么,以下哪项才是正确的破案结果?
(A)甲作案。
(B)乙作案。
(C)丙作案。
(D)丁作案。
(E)甲、乙、丙、丁共同作案
53.古代一位国王和他的张、王、李、赵、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。打猎中,一只鹿中箭倒下,但不知是何人所射。
张说:"或者是我射中的,或者是李将军射中的。"
王说:"不是钱将军射中的。"
李说:"如果不是赵将军射中的,那么一定是王将军射中的。"
赵说:"既不是我射中的,也不是王将军射中的。"
钱说:"既不是李将军射中的,也不是张将军射中的。"
国王让人把射中鹿的箭拿来,看了看,说:"你们五位将军的猜测,只有两个人的话是真的。"请根据国王的话,判定以下哪项是真的?
(A)张将军射中此鹿。
(B)王将军射中此鹿。
(C)李将军射中此鹿。
(D)赵将军射中此鹿。
(E)钱将军射中此鹿。
54.有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
55.有23枚硬币在桌上,10枚正面朝上。假设别人蒙住你的眼睛,而你的手又摸不出硬币的反正面。让你用最好的方法把这些硬币分成两堆,每堆正面朝上的硬币个数相同。
56.两个空心球,大小及重量相同,但材料不同。一个是金,一个是铅。空心球表面涂有相同颜色的油漆。现在要求在不破坏表面油漆的条件下用简易方法指出哪个是金的,哪个是铅的。
57.有一个大西瓜,用水果刀平整地切,总共切9刀,最多能切成多少份,最少能切成多少份?
58.100个人回答五道试题,有81人答对第一题,91人答对第二题,85人答对第三题,79人答对第四题,74人答对第五题,答对三道题或三道题以上的人算及格,那么,在这100人中,至少有多少人及格?
59.现在共有100匹马跟100块石头,马分3种,大型马,中型马跟小型马。其中一匹大马一次可以驮3块石头,中型马可以驮2块,而小型马2头可以驮一块石头。问需要多少匹大马,中型马跟小型马?(问题的关键是刚好必须是用完100匹马)
60.一个球、一把长度大约是球的直径2/3的直尺,你怎样测出球的半径?方法很多,看看谁的比较巧妙。
『柒』 逻辑推理题目
3号瓶里的短蜡烛最先灭,因为此瓶内co2产生的最快,且产生后都沉在底下,所以短蜡烛会先灭; 4号里的长蜡烛将最后熄灭,最后灭的肯定是3根长蜡烛之一,3号瓶内由于co2聚集的多,所以长蜡烛烧到一定程度后 瓶内氧气会先没有,4号瓶内不知道有多少水,(如果水很多的话 甚至有可能最先灭掉,因为水里的那部分蜡烛是不能烧的)如果水比较少则可能最晚灭(因为水能吸收一定量的co2)。
『捌』 数学智力题,字少的,有答案
这前面十道是年龄较大点的人答的1、海盗分金问题
传说,从前有五个海盗抢得了100枚金币.他们通过了一个如何确定选用谁的分配方案的安排.即:
1.抽签决定各人的号码(1,2,3,4,5);
2.先由1号提出分配方案,然后5个人表决.当且仅当超过半数人同意时,方案才算被通过,否则他将被扔入大海喂鲨鱼;
3.当1号死后,再由2号提方案,4个人表决,当且仅当超过半数同意时,方案才算通过,否则2号同样将被扔入大海喂鲨鱼;
4.往下依次类推……
根据上面的这个故事,现在提出如下的一个问题.即:我们假定每个海盗都是很聪明的人,并且都能够很理智地判断自己的得失,从而做出最佳的选择,那么第一个海盗应当提出怎样的分配方案才能够使自己不被扔入大海喂鲨鱼,而且收益还能达到最大化呢?
2、帽子问题(疯狗问题与此同理)
一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其他人帽子的颜色,却不知自己的。主持人先让大家看看别人头上戴的什么帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
3、称球问题:
一共12个一样的小球, 其中只有一个重量与其它不一样(未知轻重),给你一个天平, 只称三次, 找出那个不同重量的球?
如果一共13个一样的小球, 其中只有一个重量与其它不一样(未知轻重),给你一个天平, 只称三次, 找出那个不同重量的球?
4、分金条问题:
你让某些人为你工作了七天, 你要用一根金条作为报酬。这根金条要被分成七块。你必须在每天的活干完后交给他们一块。如果你只能将这根金条切割两次,你怎样给这些工人分?
5、猴子搬香蕉问题:
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里。
6、飞机加油问题:
每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈。
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场)
7、硬币游戏:16个硬币,A和B轮流拿走一些,每次拿走的个数只能是1,2,4中的一个数。
谁最后拿硬币谁输。问:A或B有无策略保证自己赢?
8、倒水问题:
也可以说是倒酒:)有三个酒杯,其中两个大酒杯每个可以装8两酒,一个可以装3两酒。现在两个大酒杯都装满了酒,只用这三个杯子怎么把酒平均的分给4个人喝?
9、帽子问题2:
有一个牢房,有3个犯人关在其中。因为玻璃很厚,所以3个人只能互相看见,不能听到对方说话的声音。”
有一天,国王想了一个办法,给他们每个人头上都戴了一顶帽子,只叫他们知道帽子的颜色不是白的就是黑的,不叫他们知道自己所戴帽子的是什么颜色的。在这种情况下,国王宣布两条如下:
1.谁能看到其他两个犯人戴的都是白帽子,就可以释放谁;
2.谁知道自己戴的是黑帽子,就释放谁。
其实,国王给他们戴的都是黑帽子。他们因为被绑,看不见自己罢了。于是他们3个人互相盯着不说话。可是不久,心眼灵的A用推理的方法,认定自己戴的是黑帽子。您想,他是怎样推断的?
10、年龄问题:
一普查员问一女人,“你有多少个孩子,他们多少岁?”女人回答:“我有三个孩子,他们的岁数相乘是36,岁数相加就等於隔离间屋的门牌号码.”普查员立刻走到隔邻,看了一看,回来说:”我还需要多少资料.”女人回答:“我现在很忙,我最大的孩子正在楼上睡觉.”普查员说:”谢谢,我己知道了
问题:那三个孩子的岁数是多少?
< 答案见下面>
答案:
1、从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!
2、假如只有一个人戴黑帽子,那他看到所有人都戴白帽,在第一次关灯时就应自打耳光,所以应该不止一个人戴黑帽子;如果有两顶黑帽子,第一次两人都只看到对方头上的黑帽子,不敢确定自己的颜色,但到第二次关灯,这两人应该明白,如果自己戴着白帽,那对方早在上一次就应打耳光了,因此自己戴的也是黑帽子―――于是也会有耳光响起;可事实是第三次才响起耳光声,说明全场不止两顶黑帽,依此类推,应该是关几次灯,有几顶黑帽。
3、分3堆,每堆4个,第一次称任意两堆,如果第一次平衡,那么坏球就在剩下的4个中
拿出3个和3个正常的称,如果比正常的重,坏的球就是重球,如果轻,坏的球就是轻球,这个就是3个中有一个知道轻重的坏球的情况,可以用一次称出。如果和正常的平衡,那么就知道剩下那个是坏的了,而且还有一次,可以确定是轻是重。分3堆,每堆4个,如果不平衡,且左边重,将左面盘里的任意3个球拿出,在将右面盘里任取3个放入左盘,最后将剩下的一堆中取3个放在右盘,此时有3种情况,1)左边仍重,则原来左盘剩下的1个球是重的或原来右盘剩下一个的球是轻的,再称一下即可判断。2)平衡,则前一步从左盘换下来的3个球有一个是重的。3)右盘重,则前一步从右盘移至左盘的球有一个是轻的。
4、1/7,2/7,4/7,第一天给1/7,第二天拿2/7换1/7………………
5、设小猴从0走到50,到A点时候他可以直接抱香蕉回家了,可是到A点时候他至少消耗了3A的香蕉(到A,回0,到A),一个限制就是小猴只能抱50只香蕉,那么在A点小猴最多49只香蕉.100-3A=49,所以A=17. 这样折腾完到家的时候香蕉剩100-3A-(50-A)=50-2A=16.
6、至少需要出动5 架飞机。思路是这样的,一架飞机要想完成绕地球一周的飞行,至少需要别的飞机给它提供1 箱油。最划算的办法显然是,派飞机和它结伴飞行前四分之一周以及后四分之一周,(因为这两段路程距离基地近所花代价小。)由它独立飞行中间的半程。必须保证两个加油点,前四分之一处,加满,后四分之一点,及时补充。那么必须有两架飞机与目标机结伴飞行四分之一周,这两架飞机需要做折返飞行,正好花费2 箱油。所以补充油的任务实际上该由另外两架飞机完成。这两架飞机飞八分之一周,做折返飞,正好富余1 箱油。因此,5 架飞机刚好完成任务。到了此时,问题只考虑了一半。能够提供多少油并不意味着就能够全部接受,受到结伴飞行的距离,即腾出的油箱空间所限制。而以下做法正好可以满足此条件。
3 、架飞机同时从机场出发,飞行八分之一周,各耗油四分之一。此时某架飞机给其余两架补满油,自己返回基地。另一机和目标机结伴,飞至四分之一周,给目标机补满油,自己返回。目标机独自飞行半周,与从基地反向出发的一机相遇,2 机将油平分,飞至最后八分之一处,与从基地反向出发的另一机相遇,各分四分之一油,返回。
7、剩2个时,取1个必胜;剩3个时,取2个必胜;剩4个时,如果对手足够聪明则必败;剩5个时,去1个必胜...
记作 2(1) 3(2) 4(x) 5(1) 6(2) 7(x) 8(1) ...
从中找出规律:
当剩余个数K=3N-2,N为自然数时,只要对手足够聪明则必败.
当K=3N-1时,有必胜策略: 取1个;
当K=3N时,有必胜策略:取2个;
所以,当16个时,后取者有必胜策略.
8、用一个三位数表示三个杯,880,前两个为8升的杯最后一个3升。开始:880_853A喝掉3升变为:850_823_B喝掉2升为:803_830_533_560_263_281A喝掉1升(A已经喝4升完毕)为:280_253_550_523_820_802_703_730_433_460_163_181CD各喝一升为:080_053_350_323CD各喝3升B喝2升,分水结束,ABCD四人各喝4升。
9、现在假设3个犯人是A、B和我那么我的推断是:
第一种:我戴的是白帽子
那么A会这么想:如果自己戴的是白帽子,那么B就会看到2个白帽子,那么他根据国王的第一条就马上会被释放,但是B现在没有被释放,说明我戴的不是白的,是黑的,哈哈,我知道自己是黑的拉,我可以要求国王释放我拉
结论:如果我戴的是白帽子,那么根据A犯人的想法得出:A和B必然有一个会被释放,但是现在2个人都没有被释放,所以我一定不是白的,而是黑的,所以我会知道自己是黑的,要求国王释放我,这样,我就被放了
同理,A和B根据别人的想法也都算出自己是黑帽子,这样3个犯人同时被释放
10、 9,2,2
分析,设三个人的年龄组成自然数组合(x,y,z),一共三个条件,
条件一:三个人岁数乘起来为36;选出满足x*y*z=36的组合;
条件二:知道三个人岁数之和后还是不能确定它们的年龄;从上面的到的组合中找出xyz之和有相同的组合;
只有 (9,2,2)=13,(6,6,1)=13
条件三:三个孩子中有一个年龄比其他两个大。符合条件的组合只有(9,2,2) 这些是小学生的智力题一、填空:(每题2分,共50分) 1、在一块正方形场地四周种树,每边都种10棵,并且四个顶点都种有一棵树。这个场地四周共种树()棵。2、从济南到北京的长途汽车中共有5个车站,从济南到北京需要为这趟长途汽车备( )种不同的车票。3、751+752+753+754+755+756+757的和是( )。4、有若干个同学排成一列横队,从左到右报数时,小强是第5个,从右到左报数时,小强是第3个,这列横队有( )个同学。5、菜场运来白菜和萝卜共70筐,白菜比萝卜多18筐,那么,运来白菜( )筐,萝卜( )筐。6、在一个长是10厘米,宽是8厘米的长方形纸上剪一个最大的正方形,正方形的周长是( )厘米。7、有两个数分别是340和150,它们的和比它们的差多( )。8、在一个除法算式里,被除数、除数、商三个数的和是212,已知商是2,那么被除数是( )。9、给8个学生发铅笔。每人5支还剩下一些,每人6支又不够。剩下的和不够的同样多,一共有()支铅笔。10、三年级同学种树80棵,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树( )棵。11、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了( )个同学。12、一桶油连桶重90千克,用去一半油后,连桶称还重50千克。原来桶里装有( )千克的油,空桶重( )千克。13、一座楼房,每上一层要走24级楼梯,小华要到五楼去,共要走( )级楼梯。14、小明买了一本书和一只书包。买书用去5元8角,买书包用的钱是买书所用钱的5倍。他带去50元钱,还剩( )元。15、想想填填: 1、2、3、4;2、3、4、5;3、4、()、6;()、()、()、716、把一根木头锯成4段需要6分,如果要锯成13段,则需要( )分。17、两个整数,和为37,较大个的一个比较小的大11,这两个整数分别是 ( )、( ) 。18、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下,要想超过姐姐,小华第三次最少要踢()个。19、小红和小强买练习本。小红买了5本,小强买了3本,小强比小红少用了6角钱。每本练习本()角钱。20、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大猴有()只。21、一个数除以7,商是154,要使余数最大,这个数应是( ),此时,余数是( )。22、把两个长都是8厘米,宽都是5厘米的完全一样的长方形拼成一个大的长方形,新的长方形周长是( 或 )。23、5个人举行跳棋比赛,每两人都要举行一场,至少要举行( )场。24、至少( )个小棱形能拼成一个大棱形。25、三年有一班的44个同学都去丛林探险,每辆小车只能坐6人,该租( )辆车。 二、操作(第1题(1)9分,(2)4分,第2题7分)。1.有5张边长是1分米的正方形纸片。(1)用这5张纸片,拼与一个周长等于12分米的图形。(至少画出三种图形) (2)用这5张纸片,拼成一个周长等于10分米的图形。(画出一个图形即可) 2.有一条是40厘米的铁丝,分别围两个边长为整数的正方形。画出这两个正方形,并标出它们的边长。 三、应用题:(每题5分)1、园林工人要在周长300米的圆形花坛边等距离地栽上树。他们先沿着花坛的边每隔3米挖一坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。这样,他们还要挖多少个坑才能完成任务? 2、小强在计算除法时,把除数76写成67,结果得到的商是15还余5。正确的商应该是多少? 3、一个书架有3层书,共有270本,从第一层拿出20本放到第二层,从第三层拿出17本放到第二层,这时三层书架中书的本数相等,原来第一层有多少本书,第二层有多少本书,第三层有多少本书? 4、小方和小强体重共重74千克,小敏和小方体重共重71千克,小敏和小强体重共重67千克,小方、小强、小敏三个人体重各是多少千克? 5、有两根绳子,白绳的长度比红绳的4倍少2米,如果白绳长18米,问红绳长多少米? 6、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人? 答案一、填空:(每题2分,计50分)1、(36)2、(6)3、(5278)4、(7)5、(44和26)6、(32)7、(300)8、(140)9、(44)10、(174)11、(136)12、(80)(10)13、(96)14、(15元2角)15、(5)(4)(5)(6)16、(24)17、(13)(24)18、(32)19、(3)20、(3)21、(1084)(6)22、(36和42)23、(10)24、(4)25、(8)二、略三、(每题5分)1、(300-3×30)÷5=42(个) 答:他们还要挖42个坑才能完成任务。2、67×15+5=1010 1010÷76=13……22 答:正确的商应该是13。3、270÷3=90 第一层:92+20=110(本) 第二层:90-20-17=53(本) 第三层:90+17=107(本)答:原来第一层有110本书,第二层有53本书,第三层有107本书。4、小方体重:(74+71-67)÷2=39(千克) 小强体重:74-39=35(千克) 小敏体重:67-35=32(千克) 答:小方体重39千克,小强体重35千克,小敏体重32千克。5、(18+2)÷4=20÷4=5(米)答:红绳长5米。 6、(24+8)×3=32×3=96(人)答:合唱队有96人。 你没表明你今年上几年级,所以都发过去了,希望你满意采纳我吧
『玖』 有点难度的逻辑题!!
1三个犯人相互瞪眼,因为“谁能看到其他两个犯人戴的都是白帽子,就可以释放谁”,而“他们3个人互相盯着不说话。可是不久”说明三个人没有没有马上通过第一种方法确定自己应该被释放,推论出要么三个人反应迟钝加眼神不好还色盲,要么从任何一人角度看都看不到两个白帽子的家伙。我倾向后者。
2没有看到两个白帽子意味着可能看到两个黑帽子或者一黑一白。A看到两个家伙都是黑的,并且都没有走,说明自己要么黑的要么白的。同时设另外两个家伙为B和C。
3,假设A自己是白帽子,那么B和C没有被释放的原因是因为他们都能看到白色的A和黑色的对方。而通过白色的A和黑色的对方没有走来判断自己的帽子一定是黑色的,那样自己就能闪人了,但是她们没有得出自己帽子是黑色的结论所以证明了A的帽子是白色的命题是假命题。
4,所以得出A的帽子是黑色的。
『拾』 国王与十名奴隶玩游戏,发给他们每人一顶帽子,有两种颜色:红帽子和白帽子。红帽子不多于5个,至少1
根据题意:红色可能为1,2,3,4,5其中之一
当为1或5时,很容易判断出自己帽子的颜色,当天就会有人去找国王获得自由,所以不是1也不是5
那么在2,3,4中分析一下就会发现在红色为2或4时,会出现第一天没人能确定自己帽子的颜色,而第二天才能确定的情况
所以答案为:红帽子有2顶或4顶
如果第三天才有人获得自由那就是3顶了